

Microwave Dielectric Ceramic

Microwave Ferrite
Hi－K Dielectric Ceramic Micro－assembly Part Thin Film

High Frequency Ceramic Materials and Components PRODUCT SELECTOR GUIDE

目 录
 Table of Contents

微波介质陶瓷材料Microwave Dielectric Ceramic
介质谐振器Dielectric Ceramic Resonator
单层电容用陶瓷基片
Ceramic Substrate for SLC3
薄膜电路用陶瓷基片
Ceramic Substrate for Thin Film
微波铁氧体基片
Microwave Ferrite Substrate
复合介质基片
Composite Dielectric Substrate
芯片电阻（微波薄膜电阻）
Chip Resistor（Microwave Thin Film Resistor） 10
芯片电容（单层电容）
Chip Capacitor（Single Layer Capacitor） 11
金属热沉／祄底／载体 金锡合金焊片
Metal Heat Sink／Chip Carrier And Gold－Tin Alloys Solder Foil 12
陶瓷垫片（短路片／支撑片）
Submount（Shorter／Standoff） 13
50欧姆微带传输线
50 Ohm Microstrip Transmission Line 14
薄膜衰减器 15
Thin Film Attenuator
16
微带环行器／微带隔离器
Microstrip Circulator／Microstrip Isolator
17
薄膜电路（陶瓷电路）
Thin Film（Ceramic Circuit）18

公司简介
 Company Profile

广州可纳瑞电子科技有限公司是一家集产品研发，生产，销售，技术服务为一体的高新技术企业，位于广州天河科技园；公司始终专注于电子陶瓷材料，陶瓷薄膜金属化技术及其相关产品的研发和市场化推广工作，拥有行业内一流的专业技术团队，积累了多年的陶瓷材料及薄膜产品开发，生产及质量控制经验，相关产品已被广泛应用于微波通讯，光纤通讯，LED 照明等超高频化，小型化，高散热要求的行业。公司目前主要客户集中在航天，军工，科研院所，民营高新企业。公司的主要产品为：高Q值陶瓷材料，介质谐振器，微波陶瓷基板，高K值陶瓷基片，微波铁氧体基板，单层电容基板，薄膜电阻，芯片电容，衰减器，陶瓷垫块，金属热沉，陶瓷短路片，薄膜电路，环形器，隔离器等多种系列产品。

公司拥有ISO9001：2000质量管理体系，不仅可以提供高品质的标准产品，同时，还可接受客户的产品定制。

我们坚信：优质的产品是您第一选择；给我们一个机会，给您自己多一个选项。

CANARYTEC CO．，LTD is your global supplier offering microwave and millimeter－wave components and parts development，manufacture，sales，and services located in Guangzhou，Chiña．Wıth more than 10 years experıeñce， you can turn to us with confidence for your Hi－K and Hi Q dielectric ceramic material and substrate ，single layer capacitor，chip resistor，heat sink，thin film attenuator products and so on．These products have been widely applicated in microwave and fiber communications，and area need super highfrequency，miniaturization and high heat dissipation．Our customers are mainly concentrated in the military，aerospace，scientific research institute and the like．We will not onlysupplythe highest quality product for you with ISO 9001：2000 at a reasonable price，but also all products can be customized to meet your specific design target．

微波介质陶瓷材料

Microwave Dielectric Ceramic

1，特点 Feature

－高Q值，主要被用于微波，毫米波频段的产品 Hi－Q，applied for microwave and millimeter －wave frequencies．
\odot 相对高的介电常数，有效降低电路的几何尺寸 Higher K value ，effectively reduce the geometry size of the circuit．
\odot 具有非常好的温度系数，可以使电路稳定工作 Good temperature coefficient，can make the circuit stably work．

2，材料参数表 Performance Table

材料编码 Material Code	介电常数 Dielectric Constant ε_{γ}	品质因数 Quality Factor $\mathrm{f}^{*} \mathrm{Q}(\mathrm{GHz})$	频率温度系数 Temperature Frequency Coefficient $\tau_{\mathrm{f}}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$	比重 Gravity （ $\mathrm{g} / \mathrm{cm}^{3}$ ）
CBS－4	3.8 ± 0.2	$\geqslant 20,000$	－	2． 2
ZST－7	6.8 ± 0.2	$\geqslant 70,000$	-40 ± 5	4． 1
ZST－10	10.0 ± 0.2	$\geqslant 65,000$	0 ± 5	4． 2
MST－12	12.0 ± 0.3	$\geqslant 150,000$	-50 ± 5	3． 6
MTC－13	12.8 ± 0.2	$\geqslant 60,000$	0 ± 5	－
MST－16	16.0 ± 0.3	$\geqslant 60,000$	0 ± 4	3． 9
$B C T-21$	21.0 ± 0.3	$\geqslant 60,000$	0 ± 3	3． 8
$B M T-24$	24.0 ± 0.3	$\geqslant 200,000$	0 ± 2	7． 5
MLT－26	26.0 ± 0.3	$\geqslant 60,000$	0 ± 3	4． 0
BZN－32	32.0 ± 0.3	$\geqslant 70,000$	2 ± 3	5． 8
$B Z T-35$	35.0 ± 0.5	$\geqslant 50,000$	1 ± 3	4． 6
$B Z T-36$	36.0 ± 0.5	$\geqslant 50,000$	2 ± 3	4． 6
ZST－38	39.0 ± 0.5	$\geqslant 55,000$	0 ± 2	5． 0
ZNT－45	45.0 ± 0.5	$\geqslant 40,000$	0 ± 2	4． 8
ZNT－50	50.0 ± 0.7	$\geqslant 30,000$	20 ± 5	4． 9
$B S T-78$	78.0 ± 1.0	$\geqslant 10,000$	-5 ± 5	5． 6
BSNT－85	85.0 ± 1.0	$\geqslant 8,000$	0 ± 10	5． 6

介质谐振器

Dielectric Ceramic Resonator

1，特点 Feature

© 非常好的微波特性，高Q值，有助于减小电路体积 Good microwave properties．It can provide higher dielectric constant in Hi－Q，the size of the circuit can be narrowed．
\odot 优异的频率温度系数，利于设计稳定的电路 Good frequency－temperature coefficient． Conducive to design the stability circuit．
\odot 稳定的介电常数 VerysteadyK，provide the better stability state．
Flexible form can be expediently made various shapes．
2，技术参数一览表 Performance Table

$\left.\begin{array}{|l|c|c|c|c|}\hline \begin{array}{c}\text { 项目 } \\ \text { Item }\end{array} & \begin{array}{c}\text { 圆盘形 } \\ \text { Disc }\end{array} & \begin{array}{c}\text { 圆柱形 } \\ \text { Cylinder }\end{array} & \begin{array}{c}\text { 正方体 } \\ \text { Cube }\end{array} \\ \hline \begin{array}{c}\text { 示意图 } \\ \text { Diagram }\end{array} \\ \text { Plate }\end{array}\right]$

3，典型应用 Typical Application

| 项目
 Item | TE模介质振荡器
 TE SeriesDielectric Resonator | | | TM模介质振荡器 |
| :---: | :---: | :---: | :---: | :---: | :---: |

单层电容用陶瓷基片

Ceramic Substrate for SLC

1，特点 Feature

\odot 介电常数覆盖面广，适应不同尺寸和容量的需求 K Value coverage is wade，adapt to the needs of different size and capacity．
\odot 具有较好的频率特性及温度系数，满足SLC 的要求 Has good frequency characteristic and the temper －ature coefficient，can meet the performance requirements of single layer capacitance．
\odot 具有较高的绝缘性能，稳定可靠且寿命长 Has high insulation performance，stable and reliable and long life．

2，材料参数表 Performance Table

材料编码 Material Code		介电常数 Dielectric Constant	介质损耗 Dissipation Factor	温度系数 Temperature Coefficient	工作电压 Working Voltage	绝缘电阻 Insulation Resistance
$\begin{aligned} & \bar{s} \\ & \underset{0}{0} \\ & \underset{0}{n} \end{aligned}$	200	20 ± 2	＜0．002\％	0 ± 5 PPM＠－55～＋125 ${ }^{\circ} \mathrm{C}$	100 V	$>1,000 \mathrm{G} \Omega$
	340	34 ± 2	＜0．003\％	$5 \pm 5 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>1,000 \mathrm{G} \Omega$
	450	45 ± 3	＜0．005\％	$5 \pm 5 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>1,000 \mathrm{G} \Omega$
	900	90 ± 5	$<0.015 \%$	$5 \pm 5 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>1,000 \mathrm{G} \Omega$
	141	140 ± 10	＜0．050\％	30 ± 10 PPM＠－55～＋125 ${ }^{\circ} \mathrm{C}$	100 V	$>1,000 \mathrm{G} \Omega$
	221	220 ± 15	＜0．30\％	$-2,200 \pm 500 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	301	300 ± 20	＜0．30\％	$-1,200 \pm 120 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	351	350 ± 20	＜0．30\％	$-1,200 \pm 1200 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	601	600 ± 30	$<0.50 \%$	$-2,200 \pm 500 P P M @-55 \sim+125^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	901	900 ± 40	＜0．50\％	$-33,000 \pm 500$ PPM＠－55～＋125 ${ }^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
$\begin{aligned} & = \\ & \omega \\ & \omega \\ & \frac{0}{U} \end{aligned}$	202	2，000 $\pm 5 \%$	＜2． 5%	$\pm 15 \%$＠－55～＋125 ${ }^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	302	3， $000 \pm 8 \%$	＜2．5\％	$\pm 15 \%$＠－55～＋125 ${ }^{\circ} \mathrm{C}$	100 V	$>100 G \Omega$
	422	4， $200 \pm 10 \%$	$<2.5 \%$	$\pm 15 \%$＠－55～＋125 ${ }^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	852	8，500 $\pm 15 \%$	＜4． 0%	＋22\％～－56\％＠－30～＋85 ${ }^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
	123	12， $000 \pm 20 \%$	＜4． 0%	＋22\％～－56\％＠－30～＋85 ${ }^{\circ} \mathrm{C}$	100 V	$>100 \mathrm{G} \Omega$
$\begin{aligned} & \equiv \\ & \infty \\ & \frac{0}{0} \end{aligned}$	253	$25,000 \pm 20 \%$	＜2． 0%	$\pm 15 \%$＠－55～＋125 ${ }^{\circ} \mathrm{C}$	25～50V	$>10 \mathrm{G} \Omega$
	333	$32,500 \pm 20 \%$	＜2． 5%	$\pm 15 \%$＠－55～＋125 ${ }^{\circ} \mathrm{C}$	25～50V	$>1 G \Omega$
	403	40， $000 \pm 20 \%$	＜2．5\％	$\pm 15 \%$＠－55～＋125 ${ }^{\circ} \mathrm{C}$	16～25V	$>1 G \Omega$

1）测试条件 Test Condition： $1 \mathrm{MHz}, 1.0 \mathrm{~V}$ ，Ag Electrode．
2）外形尺寸 $L \& W$ Size： $1.5^{\prime \prime} \times 1.5^{\prime \prime}(38.1 \times 38.1 \mathrm{~mm})$ ．
3）厚度尺寸 TSize：0．006＂（0．152mm），0．007＂（0．178mm），0．008＂（0．204mm），0．010＂（0．254mm）
4）厚度公差 T Tolerance：± 0.001＂$(0.025 \mathrm{~mm})$

薄膜电路用陶瓷基片

Ceramic Substrate for Thin Film

1，技术参数一览表 Performance Table

指标 Item		单位 Units	实验方法 TestMethods	ADS－995	ADS－996	Superstrate ${ }^{\circledR} 996$	Superstrate ${ }^{\circledR}$ TPS
纯度 Purity		重量 \％	ASTM－D2442	99.5	99.6	99.6	99.6
颜色 Color		——	——	白色 White	白色 White	白色 White	白色 White
密度 Density		$\mathrm{g} / \mathrm{cm}^{3}$	ASTM－C373	3.88	3.88	3.88	3.95
硬度 Hardness		——	ASTM－E18，R45N	87	87	87	87
	As－Fired	微英寸（纳米） Microinches （Nanometers）	Profilometer 0．004＂Radius Stylus 0．30＂Cutoff ANSI／ASME B46．1	5（127）	3（77）	2（51）	——
	Lapped			＜30（762）	＜12（305）	＜10（254）	＜10（254）
	Polished			＜2（51）	＜1（26）	＜1（26）	＜1（26）
粒度Grain Size		Microns	——	＜ 2.2	＜ 1.2	＜ 1.0	＜ 1.0
挠曲强度 F．S．		Kpsi（MPa）	ASTM－F394	83（572）	86（592）	90（620）	99（682）
弹性系数 E．C．		$10^{6} \mathrm{psi}(\mathrm{GPa})$	ASTM－C848	54（372）	54（372）	54（372）	54（372）
泊松比 P ．R．		——	ASTM－C848	0.2	0.2	0.2	0.2
徼 $25^{\circ} \mathrm{C}-300^{\circ} \mathrm{C}$		$1 \times 10^{-6} \mathrm{P} \mathrm{C}$	ASTM－C372	7.0	7.0	7.0	6.3
䇣 $25^{\circ} \mathrm{C}-600^{\circ} \mathrm{C}$				7.5	7.5	7.2	7.2
C ${ }^{\text {c }}$ 25 ${ }^{\circ} \mathrm{C}-800^{\circ} \mathrm{C}$				8.0	8.0	7.9	7.9
$\stackrel{T}{T} 2^{\circ} 5^{\circ} \mathrm{C}-1000^{\circ} \mathrm{C}$				8.3	8.3	8.2	8.2
热导率TC＠ $100^{\circ} \mathrm{C}$		W／m ${ }^{\circ} \mathrm{K}$	ASTM－C408	25.5	26.6	26.9	27.0
$\begin{array}{\|c} \hline \text { 介质 } \\ \text { 强度 } \\ \text { D. S. } \end{array}$	0．025＂	AC Volts／mil	ASTM－D116	575	575	600	640
	0.040 ＂			450	450	450	500
$\begin{aligned} & \text { 介电 } \\ & \text { 常数 } \\ & D . C . \end{aligned}$	＠1MHz	——	ASTM－D150	9.8	9.9	9.9	9.9
	＠10GHz	－	ASTM－D2520	9.6	9.7	9.8	9.9
损耗因数 D．L．	＠1MHz	－	－—	0.0001	0.0001	0.0001	0.0001
	＠10GHz	－	——	0.0002	0.0002	0.0002	0.0001
$$	$25^{\circ} \mathrm{C}$	Ohm－cm	ASTM－D257	$>10^{14}$	$>10^{14}$	$>10^{14}$	$>10^{15}$
	$100^{\circ} \mathrm{C}$			$>10^{14}$	$>10^{14}$	$>10^{14}$	$>10^{15}$
	$300^{\circ} \mathrm{C}$			$>10^{12}$	$>10^{12}$	$>10^{13}$	$>10^{14}$
	$500^{\circ} \mathrm{C}$			$>10^{9}$	$>10^{9}$	$>10^{10}$	$>10^{12}$
	$700^{\circ} \mathrm{C}$			$>10^{8}$	$>10^{8}$	$>10^{9}$	$>10^{10}$

2，外形尺寸一览表 Size Table

标准厚度值 Standard Thickness	厚度公差 Thickness Tolerance		
	标准即烧型 StandardAs－Fired	高级即烧型 PremiumAs－Fired	抛光型 Polished
$0.005^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$
$(0.127 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$
$0.010^{\prime \prime}$	$\pm 0.001^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$
$(0.254 \mathrm{~mm})$	$(\pm 0.0254 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$
$0.015^{\prime \prime}$	$\pm 0.0015^{\prime \prime}$	$\pm 0.00075^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$
$(0.381 \mathrm{~mm})$	$(\pm 0.0381 \mathrm{~mm})$	$(\pm 0.01905 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$
$0.020^{\prime \prime}$	$\pm 0.002^{\prime \prime}$	$\pm 0.001^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$
$(0.508 \mathrm{~mm})$	$(\pm 0.0508 \mathrm{~mm})$	$(\pm 0.0254 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$
$0.025^{\prime \prime}$	$\pm 0.0025^{\prime \prime}$	$\pm 0.000125^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$
$(0.635 \mathrm{~mm})$	$(\pm 0.0635 \mathrm{~mm})$	$(\pm 0.03175 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$
$0.030^{\prime \prime}$	$\pm 0.003^{\prime \prime}$	$\pm 0.0015^{\prime \prime}$	$\pm 0.0005^{\prime \prime}$
$(0.762 \mathrm{~mm})$	$\pm 0.0762 \mathrm{~mm})$	$(\pm 0.0381 \mathrm{~mm})$	$(\pm 0.0127 \mathrm{~mm})$

3，技术等级一览表 Camber Grade Table

起趐度等级 Camber Grade	起翘度 Camber	
	电阻 Resistor	电极 Conductor
标准即烧型 Standard As－Fired	$\begin{gathered} 0.002^{\prime \prime} \\ (0.0508 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 0.003^{\prime \prime} \\ (0.0762 \mathrm{~mm}) \end{gathered}$
高级即烧型 Premium As－Fired	$\begin{gathered} 0.002 " 1 \\ (0.0508 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 0.002 " 1 \\ (0.0508 \mathrm{~mm}) \end{gathered}$
抛光－标准型＊ Polished－Standard	$\begin{gathered} 0.001^{\prime \prime} \\ (0.0254 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 0.001^{\prime \prime} \\ (0.0254 \mathrm{~mm}) \end{gathered}$
抛光－高级型＊ Polished－Premium	$\begin{gathered} 0.0005^{\prime \prime} \\ (0.0127 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 0.0005^{\prime \prime} \\ (0.0127 \mathrm{~mm}) \end{gathered}$
＊抛光基片起翘度的测试结果，基于受控状态下平面度测试数据。 ＊Polished material measured for flatness in restrained state．		

薄膜电路用陶瓷基片

Ceramic Substrate for Thin Film

4，常用材料参数一览表
Conventional Materials Performance Table

指标 Item	单位 Units	氮化铝 ALN	氧化铍 BeO	石英玻璃 SiO_{2}	微晶玻璃 SiO_{2}	钠酸盐 Titanates
纯度 Purity	重量\％	99.0	99.5	100	80.0	－
颜色 Color	－－	黄褐色 Tan	白色 White	无色 Colorless	白色 White	灰色 Gray
密度 Density	$\mathrm{g} / \mathrm{cm}^{3}$	3.28	2.85	2.20	2.39	－
表面粗糙度S．R．	μ－inches（nm）	＜2．0（50）	2．0～4．0（50～100）	＜2．0（50）	＜2．0（50）	＜3．0（76）
起翘度 Camber	inch／inch	0．0003～0．0005	0．0003～0．0005	0．0003～0．0005	0．0003～0．0005	0．0003～0．0005
	$\mathrm{nm} / \mathrm{mm}$	76～152	76～152	76～152	76～152	76～152
厚度 Thickness	Inches （mm）	$\begin{gathered} 0.005 \sim 0.040 \\ (0.127 \sim 1.012) \end{gathered}$	$\begin{gathered} 0.005 \sim 0.040 \\ (0.127 \sim 1.012) \end{gathered}$	$\begin{gathered} 0.010 \sim 0.040 \\ (0.254 \sim 1.012) \end{gathered}$	$\begin{gathered} 0.006 \sim 0.040 \\ (0.152 \sim 1.012) \end{gathered}$	$\begin{aligned} & 0.005 \sim 0.020 \\ & (0.127 \sim 0.508) \end{aligned}$
厚度公差T．T．	Inches（mm）	0．0005（0．0127）	0．0005（0．0127）	0．0005（0．0127）	0．0005（0．0127）	0．0005（0．0127）
热钞胀系数CoTE	$1 \times 10^{-6} \mathrm{p}$	4．6（25～300$\left.{ }^{\circ} \mathrm{C}\right)$	$9.0\left(25 \sim 1000^{\circ} \mathrm{C}\right)$	$0.55\left(20 \sim 320^{\circ} \mathrm{C}\right)$	$0.97\left(20 \sim 320^{\circ} \mathrm{C}\right)$	－
热导率T．C．	W／miK	170～200	270	－	－	－
介电常数 D．C．	＠1MHz	8.6	6.5	3.826	5.76	4．3～250
损耗因数 D．L．	＠1MHz	0.0004	0.0004	0.000015	0.000038	0．0002～0．005
硬度 Hardness	Rockwell	－	45.0	7．0Mohs	7.0 Mohs	－
挠曲强度 F．S．	$K\left(10^{-3}\right) \mathrm{lbs} / \mathrm{in}^{2}$	59 （ 4pt．Bend）	35 （ 3pt．Bend）	25.0	22.0	－
抗压强度 C．S．	$M\left(10^{-3}\right) \mathrm{lbs} / \mathrm{in}^{2}$	－	－	161	161	－
粒度 Grain Size	$\mu \mathrm{m}$（microns）	5～7	9～16	非晶态	非晶态	－

5，材料代码及尺寸一览表 Material Code \＆Size Table

代码 Code	材料名称 Material Description	长宽尺寸 Length \＆Width Size	厚度尺寸 Thcikness Size
A	$\begin{aligned} & \hline 96 \% \text { 三氧化二铝(即烧型) } \\ & 96 \% \text { Alumina (As-Fired) } \end{aligned}$	$\begin{aligned} & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \text { 3. } 0^{\prime \prime} \times 3.0^{\prime \prime}(76.2 \times 76.2 \mathrm{~mm}) \end{aligned}$	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
B	$\begin{gathered} 99.6 \% \text { 三氧化二铝(即烧型) } \\ 99.6 \% \text { Alumina (As-Fired) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \text { 3. } 0^{\prime \prime} \times 3.0^{\prime \prime}(76.2 \times 76.2 \mathrm{~mm}) \end{aligned}$	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
C	$\begin{aligned} & 99.6 \% \text { 三氧化二铝(拋光型) } \\ & 99.6 \% \text { Alumina(Polished) } \end{aligned}$	$\begin{aligned} & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \text { 3. } 0^{\prime \prime} \times 3.0^{\prime \prime}(76.2 \times 76.2 \mathrm{~mm}) \end{aligned}$	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
D	氮化铝（即烧型） Aluminum Nitrid（As－Fired）	$\begin{aligned} & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \text { 3. } 0^{\prime \prime} \times 3.0^{\prime \prime}(76.2 \times 76.2 \mathrm{~mm}) \end{aligned}$	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
E	氮化铝（扡光型） Aluminum Nitrid（Polished）	$\begin{aligned} & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \text { 3. } 0^{\prime \prime} \times 3.0^{\prime \prime}(76.2 \times 76.2 \mathrm{~mm}) \end{aligned}$	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
F	$\begin{gathered} \text { 氧化铍 (即烧型) } \\ \text { Beryllium-Oxide (As-Fired) } \end{gathered}$	2． $0^{\prime \prime} \times 2.0$＂$(50.8 \times 50.8 \mathrm{~mm})$	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
G	氧化铍（抛光型） Beryllium－Oxide（Polished）	2． 0 ＂$\times 2.0$＂（ $50.8 \times 50.8 \mathrm{~mm}$ ）	$0.010^{\prime \prime}(0.254 \mathrm{~mm}), 0.015^{\prime \prime}(0.381 \mathrm{~mm})$ $0.020^{\prime \prime}(0.508 \mathrm{~mm}), 0.025^{\prime \prime}(0.635 \mathrm{~mm})$
H	微晶玻璃 Glass Ceramics	$\begin{aligned} & \text { 1. } 5 " \times 1.5^{\prime \prime}(38.1 \times 38.1 \mathrm{~mm}) \\ & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \end{aligned}$	$0.005^{\prime \prime}(0.127 \mathrm{~mm}), 0.010^{\prime \prime}(0.254 \mathrm{~mm})$ $0.015^{\prime \prime}(0.381 \mathrm{~mm}), 0.020^{\prime \prime}(0.508 \mathrm{~mm})$
I	石英玻璃 Fused Silicon Quartz	$\begin{aligned} & \hline \text { 1. 5" } \times 1.5 "(38.1 \times 38.1 \mathrm{~mm}) \\ & \text { 2. } 0^{\prime \prime} \times 2.0^{" ~}(50.8 \times 50.8 \mathrm{~mm}) \end{aligned}$	$0.005^{\prime \prime}(0.127 \mathrm{~mm}), 0.010^{\prime \prime}(0.254 \mathrm{~mm})$ $0.015^{\prime \prime}(0.381 \mathrm{~mm}), 0.020^{\prime \prime}(0.508 \mathrm{~mm})$
J	蓝宝石 Sapphire	$\begin{aligned} & \hline \text { 1. } 5 " \times 1.5^{\prime \prime}(38.1 \times 38.1 \mathrm{~mm}) \\ & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \hline \end{aligned}$	0．010＂（0．254mm）－0．040＂（1．016mm）
K	钠酸盐 Titanates	1．5＂$\times 1.5$＂（38． $1 \times 38.1 \mathrm{~mm}$ ）	$\begin{aligned} & \hline 0.006^{\prime \prime}(0.152 \mathrm{~mm}), 0.007^{\prime \prime}(0.178 \mathrm{~mm}) \\ & 0.008^{\prime \prime}(0.203 \mathrm{~mm}), 0.010^{\prime \prime}(0.254 \mathrm{~mm}) \end{aligned}$
L	硅 Silicon	$\begin{aligned} & \text { 2. } 0^{\prime \prime} \times 2.0^{\prime \prime}(50.8 \times 50.8 \mathrm{~mm}) \\ & \text { 3. } 0^{\prime \prime} \times 3.0^{\prime \prime}(76.2 \times 76.2 \mathrm{~mm}) \end{aligned}$	0．010＂（0．254mm）－0．040＂（1．016mm）
M	铁氧体 Ferrite	2． $00 \prime \times 2.0$＂$(50.8 \times 50.8 \mathrm{~mm})$	$0.010{ }^{\prime \prime}(0.254 m m)-0.040$＂ 1.016 mm$)$

微波铁氧体基片

Microwave Ferrite Substrate

1，技术参数一览表 Performance Table

材料体系 Material System	材料编码 Material Code	饱和磁强 $4 \pi M s(\pm 5 \%)$ Gauss	最大线宽 ＠ 9.4 GHz $\triangle H @-3 d B$ Oersted	介电常数 Dielectric Constant ε_{γ}	介质损耗 （＠9．4GHz） 10^{-4}	居里温度 Curie T．${ }^{\circ} \mathrm{C}$
镍系 Nickel System	NF－2500	2，500	500	13.0	＜15．0	530
	NF－2900	2，900	130	13.0	＜ 15.0	510
	NF－4000	4，000	350	13.0	＜ 15.0	480
	NF－5000	5，000	165	13.0	＜ 15.0	350
镁系 Magnesium	MF－1500	1，500	180	12.0	＜2．5	180
	MF－3000	3，000	190	12.9	＜ 5.0	240
锂系 Lithium System	LF－0900	900	100	18.0	＜ 10.0	150
	LF－1200	1，200	350	16.5	＜ 10.0	390
	LF－2200	2，200	450	16.5	＜ 10.0	520
	LF－3000	3，000	450	16.4	＜ 10.0	390
	LF－3700	3，700	400	16.0	＜10．0	560
钇系 Yttrium System	YG－1780	1，780	30	15.0	＜2．0	280
	YG－1800－SNL	1，800	15	15.4	＜1．5	280
	YGZ－1780	1，780	20	15.1	＜2．0	225
钇钴系Yt \＆Co	YGC－1780	1，780	30	15.0	＜1．0	280
钙钒系 Calcium Vanadium System	NG－1000	1，000	10	14.0	<2.0	199
	NG－1000－SNL	1，000	6	15.0	<1.5	215
	NG－1200	1，200	10	14.4	＜2．0	208
	NG－1200－SNL	1，200	6	15.0	＜1．5	215
	NG－1400	1，400	10	14.5	<2.0	215
	NG－1560－SNL	1，560	6	15.0	＜1．5	215
	NG－1600	1，600	10	14.6	<2.0	220
	NGZ－1600	1，600	10	14.6	<2.0	220
	NG－1850	1，850	12	14.8	＜2．0	214
	NG－1950	1，950	12	15.2	＜2．0	205
铝系 Aluminum System	AL－0400	400	45	14.1	<2.0	135
	AL－0800	800	30	14.6	＜2．0	210
	AL－1000	1，000	30	14.7	＜2．0	210
	AL－1200	1，200	30	14.8	＜2．0	210
钝系 Gadolinium System	GD－800	800	75	15.3	<2.0	280
	GD－1000	1，000	55	15.3	<2.0	280
	GD－1200	1，200	75	15.2	<2.0	280
	GD－1600	1，600	50	15.1	<2.0	280
钝铝系 Gadolinium Aluminum System	GA－400	400	78	14.2	＜2．0	150
	GA－650	650	72	14.6	<2.0	200
	GA－800	800	70	14.7	＜2．0	240
	GA－1000	1，000	55	14.7	<2.0	250
	GA－1200	1，200	55	15.1	<2.0	260
	GA－1400	1，400	55	15.1	<2.0	265
钬系 Holmium System	HG－0475	475	130	14.5	<2.0	225
	HG－1200	1，200	120	15.2	<2.0	280
	HG－1600	1，600	84	15.1	＜2．0	280

微波铁氧体基片

Microwave Ferrite Substrate

IIT Trans－Tech
 Ceramics and Advanced Materials

2，微波陶瓷材料一览表 Microwave Material Performance Table

材料编码 Material Code	介电常数 Dielectric Constant （＠9．4GHz）	介电损耗 Dissipation Factor 10^{-4}	介电常数温度系数 D．C．Temperature Coefficient ${ }^{\circ} C^{-1} \times 10^{-6}$	膨胀系数 Expansion Coefficient ${ }^{\circ} \mathrm{C}^{-1} \times 10^{-6}$	导热系数 Thermal Conductivity $\mathrm{cal} / \mathrm{cm}^{2} / \mathrm{cm} / \mathrm{sec} / \mathrm{C}$ $\times 10^{-3}$
K－4	4.3	<2.0	＋55	2.4	7
K－6	6.3	＜ 2.0	＋107	10.0	9
K－9	9.0	＜ 2.0	＋115	6.0	45
K－9．5	9.5	＜ 1.5	＋100	7.5	25
K－12	12.0	＜2．0	＋100	7.5	25
K－15	15.0	<2.0	＋100	7.5	25
K－16	16.0	<2.0	＋120	7.5	10
K－18	18.0	<10.0	＋80	8.0	10
K－20	20.0	<10.0	＋10	8.5	10
K－25	25.0	<10.0	－125	9.0	10
K－30	30.0	<10.0	－370	9.2	10
K－50	50.0	<10.0	－700	9.7	10
K－80	80.0	＜ 10.0	－980	10.0	10
K－100	100.0	<10.0	－1，100	10.3	10
K－140	140.0	<15.0	－1，200	10.7	10
K－160	160.0	<15.0	－1，250	10.8	10
K－250	250.0	<50.0	－2，600	10.0	10

3，材料形状 Material Shape
－片Substrates：
圆片Discs，方片Square Plates，三角形片Triangles．
－环Rings：
内铁氧体／外微波介质 Ferrite／Dielectric．
－块Blocks：
棒条状Roads，圆柱状Cylinders，长方体Cuboids．

4，常用介质环产品一览表 Common Dielectric Ring Table

产品编码 Product Code	厚度 mm Thickness	内环 Inner Ring			外环 Outer Ring		
		$4 \pi \mathrm{Ms}$	$\Phi \mathrm{mm}$	Material Code	K	$\Phi \mathrm{~mm}$	
$R 7.3 / 10.2 / 0.65-A$	0.65	NG－1600	1600	7.3	$K-20$	20.0	10.2
$R 15.4 / 19.5 / 0.90-A$	0.90	YG－1780	1780	15.4	$K-30$	30.0	19.5
$R 17.0 / 22.0 / 1.00-A$	1.00	YG－1780	1780	17.0	$K-30$	30.0	22.0
$R 18.0 / 23.4 / 1.00-A$	1.00	YG－1780	1780	18.0	$K-30$	30.0	23.4

复合介质基片

Composite Dielectric Substrate

1，微波陶瓷材料一览表 Microwave Material Performance Table

材料编码 Material Code	介电常数 DielectricConstant ε_{r}	品质因数 Quality Factor $\mathrm{f}^{*} \mathrm{Q}(\mathrm{GHz})$	频率温度系数 Coaturfrequency $\tau_{f}(\mathrm{ppm} / \mathrm{c}$ ）	比重 Gravity $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$
$M S T-12$	12.0 ± 0.3	$\geqslant 150,000$	-50 ± 5	3.6
$M T C-13$	12.8 ± 0.2	$\geqslant 60,000$	0 ± 5	-
$M S T-16$	16.0 ± 0.3	$\geqslant 60,000$	0 ± 4	3.9
$B C T-21$	21.0 ± 0.3	$\geqslant 60,000$	0 ± 3	3.8
$B M T-24$	24.0 ± 0.3	$\geqslant 200,000$	0 ± 2	7.5
$M L T-26$	26.0 ± 0.3	$\geqslant 60,000$	0 ± 3	4.0
$B Z N-32$	32.0 ± 0.3	$\geqslant 70,000$	2 ± 3	5.8
$B Z T-35$	35.0 ± 0.5	$\geqslant 50,000$	1 ± 3	4.6
$Z S T-38$	39.0 ± 0.5	$\geqslant 55,000$	0 ± 2	5.0
$Z N T-45$	45.0 ± 0.5	$\geqslant 40,000$	0 ± 2	4.8

2，常用微波铁氧体材料一览表 Common Microwave Ferrite Table

材料编码 Material Code	饱和磁强 $4 \pi M s(\pm 5 \%)$ Gauss	最大线宽 ＠ 9.4 GHz $\triangle H @-3 d B$ Oersted	介电常数 Dielectric Constant ε	介质损耗 （＠9．4GHz） 10^{-4}	居里温度 Curie T．${ }^{\circ} \mathrm{C}$
YG－1780	1，780	30	15.0	<2.0	280
YG－1800	1，800	15	15.4	<1.5	280
NG－1850	1，850	12	14.8	<2.0	214
NG－1950	1，950	12	15.2	<2.0	250
NF－2100	2，100	220	12.0	<15.0	530
NF－2300	2，300	220	12.5	<15.0	530
NF－2500	2，500	220	13.0	<15.0	530
NF－3000	3，000	130	13.0	<15.0	510

复合介质基片设计规范

Composite Dielectric Substrate Design Rules

3，定位孔设计规范 Design Specification for Positioning Holes

4，工艺参数一览表 List of Process Parameters

分类 Classification	项目 Item	参数 Feature
陶瓷基板 Ceramic Substrate	长\＆宽及公差 Length \＆Width，Tolerance	$50.8 \times 50.8 \mathrm{~mm}, \pm 0.05 \mathrm{~mm}$
	厚度及公差 Thickness，Tolerance	$0.20 \sim 2.00 \mathrm{~mm}, \pm 0.02 \mathrm{~mm}$
	孔径及公差 Apertures，Tolerance	1．00～10．0mm，$(+0.01,0) \mathrm{mm}$
	表面光洁度－A面 Surface Finishment－A Side	抛光 Polished，Ra 0 0．02um
	表面光洁度－B面 Surface Finishment－B Side	精磨 lapped，Ras0．30um
铁氧体瓷粒 Ferrite Cylinder	直径及公差 Diameter，Tolerance	1．00～10．0mm，$(0,-0.01) \mathrm{mm}$
	高度 Height	$T+0.50 \mathrm{~mm}$
金属化工艺 Metallization	拼板有效面积 Effective Area	$47.0 \times 47.0 \mathrm{~mm}$
	划切刀宽 Cutting width	0.15 mm
	镍铬层厚度 Ni－CrLayer Thickness	$0.08 \sim 0.12 \mathrm{um}$
	铜层厚度 Cu Layer Thickness	2．00～3．00um
	金层厚度 Au Layer Thickness	$3.00 \sim 5.00 \mathrm{um}$

芯片电阻（微波薄膜电阻）

Chip Resistor（Microwave Thin Film Resistor）

1，技术参数一览表 Performance Table

	0201（0．51＊0．25mm）		0402（1．02＊0．51mm）		0603（1．52＊0．76mm）	
	$J(\pm 5 \%)$	$K(\pm 10 \%)$	$J(\pm 5 \%)$	$K(\pm 10 \%)$	$J(\pm 5 \%)$	$K(\pm 10 \%)$
50Ω	R0201B500J	R0201B500K	R0402B500J	R0402B500K	R0603B500J	R0603B500K
100Ω	R0201B101J	R0201B101K	R0402B101J	R0402B101K	R0603B101J	R0603B101K
200Ω	R0201B201J	R0201B201K	R0402B201J	R0402B201K	R0603B201J	R0603B201K

1．1，以上产品型号均对基片材质 $99.6 \% A L_{2} \mathrm{O}_{3}$ 而言。The above products code no．refers to the material of $99.6 \% A L_{2} \mathrm{O}_{3}$ ． 2，基片标准厚度 0.010 inches（ 0.254 mm ）。Standard Thickness 0.010 inches $(0.254 \mathrm{~mm}$ ）．

电阻材质 Resistance Material	电阻温度系数 Resistance $T C R$	电阻最小尺寸 Min Resistance Size	焊盘最小尺寸 MinPad Size
氮化钽 $T a N$	$\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$0.050 * 0.050 \mathrm{~mm}$	$0.100 * 0.100 \mathrm{~mm}$

2，性能曲线图 Performance Graph

3，电阻网络 Resistor Network

隔离型电阻网络 Isolated Connection Resistor Array

共电极型电阻网络
Common Connection Resistor Array

串联型电阻网络
Series Connection Resistor Array

芯片电容（单层电容）

Chip Capacitor（Single Layer Capacitor）

1，技术参数一览表 Performance Table

$\begin{aligned} & \text { 尺寸 } \\ & \text { 容值 Size } \\ & \text { Capacitance } \end{aligned}$	$\begin{gathered} 15^{*} 15 \mathrm{mil} \\ \left(0.38^{*} 0.38 \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} 20 * 20 \mathrm{mil} \\ (0.51 * 0.51 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 25^{*} 25 \mathrm{mil} \\ (0.64 * 0.64 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 30 * 30 \mathrm{mil} \\ \left(0.76^{*} 0.76 \mathrm{~mm}\right) \end{gathered}$	$\begin{gathered} 35 * 35 \mathrm{mil} \\ (0.89 * 0.89 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 90^{*} 90 \mathrm{mil} \\ (2.29 * 2.29 \mathrm{~mm}) \end{gathered}$
3.0 pF	C1515K3R0M					
3.6 pF	C1515K3R6M					
14.0 pF		C2020K140M				
20.0 pF			C2525K200M			
22.0 pF	C1515K220M			C3030K220M		
30.0 pF				C3030K300M		
33.0 pF	C1515K330M					
39.0 pF	C1515K390M					
75.0 pF		C2020K750M				
100 pF	C1515K101M		C2525K101M	C3030K101M		
220 pF		C2020K221M				
330 pF		C2020K331M				
470 pF			C2525K471M			
1，000 pF					C3535K102M	
10， 000 pF						C9090K103M

4．1，以上产品容值公差等级均为M级（ $\pm 20 \%$ ）。The above SLC capacitance tolerance is M Level（ $\pm 20 \%$ ）．
2，产品厚度为 $0.152 \mathrm{~mm}, 0.178 \mathrm{~mm}, 0.254 \mathrm{~mm}$ 。The thickness size is $0.006^{\prime \prime}, 0.007^{\prime \prime}, 0.010^{\prime \prime}$ 。
2，容量的换算 Capacitance Conversion

3，导体层的选择 Metal Electrode Choice

金属结构 Metal Construction	金属层厚度 Layer Thickness	适用焊接工艺 Applicable Scope
钛钨－镍－金 TiW－Ni－Au	TiW： 0.8 um Ni：1～2 um $A u:>2.54 u m$	SMT／手工焊 SMT／Hand Welding
钕钨－金 TiW－Au	$\begin{aligned} & \text { TiW: } 0.8 \mathrm{um} \\ & A u:>2.54 \mathrm{um} \end{aligned}$	微组装（金丝邨定） Wire Bonding

金属热沉／祄底／载体 金锡合金焊片

Metal Heat Sink／Chip Carrier And Gold－Tin Alloys Solder Foil

1，技术参数一览表 Performance Table

项目 Item 代码 Code Material		密度 $-\mathrm{g} / \mathrm{cm}^{3}$ Density	钐胀系数－PPM $/{ }^{\circ} \mathrm{C}$ Coefficientofexpansion	导热系数－W／mK Thermalconductivity	硬度－HB Hardness
P	钨铜合金 W80\％：Cu20\％	15． 15	8． 3	200	220
Q	钨铜合金 W85\％：Cu15\％	15． 90	7． 3	190	240
R	钼铜合金 Mo80\％：Cu20\％	9． 96	7． 6	204	172
S	锄铜合金 Mo85\％：Cu15\％	10.01	7.0	195	156
T	铜钿铜（CMC）13：74：13	9． 88	5． 6	200	－
U	无氧铜 OFC TU1／TU2	8． 90	16.7	397	102
v	可伐合金 Kovar 4J29	8． 30	5． 3	17	155
w	金锡合金 Au80\％：Sn20\％	14． 5	16．0	57.0	276

$\stackrel{n}{>}$

> 1, 金锡合金焊片是一种预成型焊接材料; Gold-Tin Alloys Soler Fiol is preformed welding material;
> 2, 金锡合金焊片熔点是 $280^{\circ} \mathrm{C}$; Melting Point of Gold-Tin Alloys Soler Fiol is $280^{\circ} \mathrm{C}$;
> 3, 金锡合金焊接温度是 $320 \sim 330^{\circ} \mathrm{C}$. Welding Temperature of Gold-Tin Alloys Soler Fiol is 320~330ㅇ.

2，选择尺寸 Size Choice

项目 Item	选项 Option
长／宽度 Length／Width（mm）	$0.20 \sim 20.0$
金属热沉厚度 MHT Thickness（mm）	$0.15,0.20,0.25,0.30,0.40,0.50,0.80,1.00,1.20 \pm 0.05$
金锡合金厚度 AuSn Thickness（um）	$17,34,40$

3，典型产品及编码 Typiacl Product Code

产品代码 Product Code	技术参数 Specification	产品代码 Product Code	技术参数 Specification
M320160P06C	W80\％：Cu20\％，3． $2 \times 1.6 \times 0.15 \mathrm{~mm}$	M320300T20C	CMC， $3.2 \times 3.0 \times 0.5 \mathrm{~mm}$
M150120R10C	Mo80\％：Cu20\％， $1.5 \times 1.2 \times 0.25 \mathrm{~mm}$	M110040W17	Au80\％：Sn $20 \%, 1.1 \times 0.4 \times 0.017 \mathrm{~mm}$

陶瓷垫片（短路片／支撑片）
Submount（Shorter／Standoff）
1，技术参数一览表 Performance Table

犲料 代码 Code Item Material		密度 $-\mathrm{g} / \mathrm{cm}^{3}$ Density	渋胀系数－PPM／${ }^{\circ} \mathrm{C}$ Coefficientofexpansion	导热系数－W／mK Thermal conductivity	硬度－GPa Hardness
A	96． 0% 三氧化二铝 $\mathrm{AL}_{2} \mathrm{O}_{3}$	3． 78	7． 3	24.7	78
B	99．6\％三氧化二铝 $\mathrm{AL}_{2} \mathrm{O}_{3}$	3． 90	7． 5	29． 3	83
D	99．0\％氮化铝 AIN	3． 33	4． 6	170	73
F	99． 5% 氧化铍 BeO	3． 03	6． 8	270	82

4．4 硬度值是采用ROCKWELL 45N 方法测试 The hardness value is tested by ROCKWELL 45 N method．

2，典型产品一览表 Typiacl Product Table

| 示意图
 Diagram | | | |
| :---: | :---: | :---: | :---: | :---: |
| 长宽尺寸
 L\＆W Size | M | | |

$\stackrel{y}{\Rightarrow}$
1，以上产品型号均对基片材质 $96.0 \% A L_{2} \mathrm{O}_{3}$ 而言。The above products code no．refers to the material of $96.0 \% A L_{2} \mathrm{O}_{3}$ ．
2，基片标准厚度 0.010 inches（ 0.254 mm ）。Standard Thickness 0.010 inches $(0.254 \mathrm{~mm})$ 。
3，A型产品留边量为 0.002 inches $(0.051 \mathrm{~mm})$ 。 The border width of A type is 0.002 inches（ 0.051 mm ）．

50欧姆微带传输线

50 Ohm Microstrip Transmission Line

1，技术参数一览表 Performance Table

代码 Code	材料 Material	项目 Item	介电常数 Dielectric Constant	介质损耗 Loss Tangent
\boldsymbol{B}	99.6% 三氧化二铝 $\mathrm{AL}_{2} \mathrm{O}_{3}$	$9.9 @ 1 \mathrm{MHz}$	$0.0001 @ 1 \mathrm{MHz}$	工作频率 Operating Frequency
\boldsymbol{I}	石英玻璃 Fused Silicon Quartz	$3.826 @ 1 \mathrm{MHz}$	$0.000015 @ 1 \mathrm{MHz}$	$D C \sim 60 \mathrm{GHz}$

2，典型产品一览表 Typiacl Product Table

产品代码 Product Code	材质 Material	$\underset{\text { Thickness }}{\text { 厚度 }}(\mathrm{mm})$	$\begin{aligned} & \text { 宽度 } \\ & \text { Width } \end{aligned} \text { (mm) }$	
L1050B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 254	1． 27	1． $0 \sim 50.8$
L10120B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 254	3． 0	1． $0 \sim 50.8$
L2040B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 508	1.0	1． $0 \sim 50.8$
L2050B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 508	1． 27	1． $0 \sim 50.8$
L2080B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 508	2． 0	1． $0 \sim 50.8$
L2540B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 635	1.0	1． $0 \sim 50.8$
L2580B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 635	2． 0	1． $0 \sim 50.8$
L25120B－XX	99． $6 \% \mathrm{~A}_{2} \mathrm{O}_{3}$	0． 635	3． 0	1． $0 \sim 50.8$
L05401－XX	石英玻璃 Fused Silicon Quartz	0． 127	1.5	1． $0 \sim 38.1$
L05501－XX	石英玻璃 Fused Silicon Quartz	0． 127	2． 0	1． $0 \sim 38.1$

上表＂产品编码＂中的XX代表是以微英寸表示的微带传输线长度。 XX above table representative the length of Microstrip transmission line in microinches．

薄膜衰减器

Thin Film Attenuator

1，技术参数一览表 Performance Table

代码 Code	材料 Material	介电常数 Item	介质损耗 Loss Tangent	工作频率 Dielectric Constant
Operating Frequency				

2，典型产品一览表 Typical Product Table

	0402（1．02＊0．51mm）			0603（1．52＊0．76mm）		
衰减值 Attenuation	$\begin{gathered} D(\pm 0.50 \mathrm{~dB} \\ @ D C \sim 18 \mathrm{GHz}) \end{gathered}$	$\begin{gathered} E(\pm 0.75 d B \\ @ D C \sim 18 \mathrm{GHz}) \end{gathered}$	$\begin{gathered} G(\pm 1.00 \mathrm{~dB} \\ @ D C \sim 18 \mathrm{GHz}) \end{gathered}$	$D(\pm 0.50 \mathrm{~dB}$ ＠DC～18GHz）	$\begin{gathered} E(\pm 0.75 \mathrm{~dB} \\ @ D C \sim 18 \mathrm{GHz}) \end{gathered}$	$\begin{gathered} G(\pm 1.00 \mathrm{~dB} \\ @ D C \sim 18 \mathrm{GHz}) \end{gathered}$
1 dB	A0402B010D			A0603B010D		
$2 d B$	A0402B020D			A0603B020D		
$3 d B$	A0402B030D			A0603B030D		
$4 d B$	A0402B040D			A0603B040D		
$6 d B$	A0402B060D			A0603B060D		
$8 d B$	A0402B080D			A0603B080D		
10 dB	A0402B100D			A0603B100D		
16 dB		A0402B160E			A0603B160E	
$32 d B$			A0402B320G			A0603B320G

[^0]我们接受客户各种薄膜衰减器的个性化设计和制作需求。
We can design and manufacture Thin Film Attenuator to meet your individual requirements．

微带环行器／微带隔离器

Microstrip Circulator／Microstrip Isolator

1，技术参数一览表 Performance Table

材料 Material	项目 Item	电极材质 Electrode Material	最小线宽 Minimum Line Width
请参看第6页 Please see page 6	铬Cr／铜Cu／金Au	0.020 mm	工作频率 Operating Frequency

2，典型环行器产品一览表 Typical Microstrip Circulator Table

产品代码 Product Code	频率范围 Frequency Range－Ghz	带宽 Band Width	正向损耗 ForwardLoss －dB	反向损耗 ReverseLoss －dB	驻波 SWR	通过功率 Directional Power－W	温度范围 Temperature Range－${ }^{\circ} \mathrm{C}$
MC－2629	2． $6 \sim 2.9$	Full	0． 4	20	1． 20	10.0	－20～＋60
MC－2932	2． $9 \sim 3.2$	Full	0． 4	20	1． 20	10．0	$-20 \sim+60$
MC－3236	3． $2 \sim 3.6$	Full	0． 4	20	1． 20	10． 0	－20～＋60
MC－3740	3． $7 \sim 4.0$	Full	0． 4	20	1． 20	10． 0	$-20 \sim+60$
MC－4045	4． $0 \sim 4.5$	Full	0． 4	20	1． 20	10． 0	$-40 \sim+70$
MC－4650	4． $6 \sim 5.0$	Full	0． 4	20	1． 20	10． 0	$-40 \sim+70$
MC－5056	5． $0 \sim 5.6$	Full	0． 4	20	1． 25	10．0	$-40 \sim+70$
MC－5760	5． $7 \sim 6.0$	Full	0． 5	20	1． 25	10． 0	$-40 \sim+70$
MC－6065	6． $0 \sim 6.5$	Full	0． 5	20	1． 25	10． 0	$-40 \sim+70$
MC－6470	6． $4 \sim 7.0$	Full	0． 5	20	1． 25	10． 0	$-40 \sim+70$
MC－7080	7． $0 \sim 8.0$	Full	0.5	20	1． 25	10.0	$-40 \sim+70$
MC－8090	8． $0 \sim 9.0$	Full	0． 5	20	1． 25	5． 0	－40～＋70
MC－90100	9．0～10．0	Full	0.5	20	1． 25	5． 0	$-40 \sim+70$
MC－105115	10． $5 \sim 11.5$	Full	0． 5	20	1． 25	5． 0	$-40 \sim+70$
MC－115125	11． $5 \sim 12.5$	Full	0． 5	20	1． 25	5． 0	－40～＋70
MC－120130	12． $0 \sim 13.0$	Full	0.5	20	1． 25	5． 0	$-40 \sim+70$
MC－130140	13． $0 \sim 14.0$	Full	0． 5	20	1． 25	5． 0	$-40 \sim+70$
MC－135145	13． $5 \sim 14.5$	Full	0.5	20	1． 25	5． 0	$-40 \sim+70$
MC－145155	14． $5 \sim 15.5$	Full	0． 5	20	1． 25	5． 0	－40～＋70
MC－155165	15． $5 \sim 16.5$	Full	0． 5	20	1． 25	5． 0	－40～＋70
MC－165175	16． $5 \sim 17.5$	Full	0． 5	20	1． 25	5． 0	$-40 \sim+70$

薄膜电路（陶瓷电路）

Thin Film（Ceramic Circuit）

1，技术参数一览表 Performance Table

产品测试及检验标准 Standard for Testing and Inspecting GJB2442－95，GJB360A－96，GJB548B－2005 MIL－STD－202，GB／T 2828．1－2003．

A，基片的选择 The Choice of Ceramic Substrate

项目 Item \quad工作频率 Frequency	DC～6GHz	DC～18GHz	DC～40GHz	DC～60GHz
基片厚度的选择（ $99.6 \% \mathrm{AL}_{2} \mathrm{O}_{3}$ ） The choice of substrate thickness（99．6\％Alumina）	$\begin{gathered} 0.635 \mathrm{~mm} \\ (0.025 \mathrm{inch}) \end{gathered}$	$\begin{gathered} 0.381 \mathrm{~mm} \\ \text { (0.015 inch) } \end{gathered}$	$\begin{gathered} 0.254 \mathrm{~mm} \\ (0.010 \mathrm{inch}) \end{gathered}$	$\begin{gathered} 0.127 \mathrm{~mm} \\ \text { (0.005 inch) } \end{gathered}$

基片表面粗糙度与光刻精度关系
0.020 mm ＠即烧型 $\mathrm{AL}_{2} \mathrm{O}_{3}$ 基片 Asfired Alumina Substrate Substrate surface roughness and lithography accuracy
0.012 mm ＠拋光型 $\mathrm{AL}_{2} \mathrm{O}_{3}$ 基片 Polished Alumina Substrate

B，技术参数 Performance

序号 No．	项目 Item	参数 Performance
1	有效面积 Effective area	$45^{*} 45 \mathrm{~mm}$＠2＊2 inches Substrate $60 * 60 \mathrm{~mm}$＠3＊3inches Substrate
2	最小线宽／缝宽 Minimum Line Width／Slit Width	0.020 mm
3	最小孔径 Minimum Hole Diameter	0.200 mm
4	是小径厚比 Minimum Hole Diameter－Thickness Ratio	0.8

2，产品检验标准 Inspection Standard

No．	检验项目 Test Item	测试标准和条件 Standards \＆Condition
1	物理尺寸 Physical Dimension	Mil－STD－883G 方法2016。 Mil－STD－883G，method 2016.
2	外 观 Visual Inspection	100% 外观检验，符合或者超过Mil－STD－883G，方法2032的要求。 100% Visual inspection to meet or exceed Mil－STD－883G，method 2032 requirements．
3	导体厚度 Conductor Thickness	导体厚度符合或者超过客户要求。 Conductor thickness to meet or exceed the customer＇s requirements．
4	膜层粘附性 Film Adhesion	采用ASTM B571－97胶带测试方法（3M \＃610 胶带）。 ASTM B571－97（Film Adhesion use 3M \＃610 tape）．
5	膜层耐高温 High Temp．Resistance	所有薄膜产品必须在 400 度下维持 10 分钟不出现问题。 All general thin film products must be met customer requirements at $400^{\circ} \mathrm{C}$ for 10 Minutes．
6	键合强度 Wire Bond Strength	Mil－STD－883G，方法2011。 Mil－STD－883G，method 2011.
7	芯片抗剪强度 Die Shear Strength	Mil－STD－883G，方法2019。 Mil－STD－883G，method 2019.
8	金丝键合剪切强度 Wire Bond Shear Strength	EIA／JESD22－B116．
9	热冲击 Thermal Shock	Mil－Std－883G，方法1011，条件C。 Mil－Std－883G，method 1011 condition c．

薄膜电路设计规范

Thin Film Design Rules

1，设计图纸 Design Document

序号 No．	项目 Item	要求 Requirements
1	文件格式 File Format	需要提供CAD文件，接受以DXF或DWF为后缀的文件． Must be in AutoCAD．DXF or．DWG files．
2	图形比例 Drawing scale	1：1
3	图形单位 Drawing unit	毫米 mm
4	图层及线条颜色标识 Layer\＆Line colour Identification	图层1 Layer 1 \square 产品轮廓线 Product Outline 导体轮郭线 Conductor Outline 图层2 Layer 2 图层3 Layer 3 图层4 Layer 4 图屋5 Layer 5 图层6 Layer 6 \square 孔轮廓线 Holes Outline
5	图形及线条 Drawing \＆Line	（1）所有图形必须是封闭的； Zero width polylines are needed to create closed boundary polygons for all geometries． （2）避免图形重叠和不必要的线条； Avoid double entities or extraneous lines． （3）图形不需要颜色填充。 All geometries only need their frame，not need fill in． 正确图形 Acceptable 错误图形 Unacceptable 错误图形 Unacceptable

2，电阻的设计 Resistors Design
$T a N$ 薄膜电阻通常是按照以下经验公式设计的：
The design of thin film TaN resistor is governed by the following equation：

$R=\rho L /(W t)$

其中 Where：$R=$ 电阻的电阻值 Total Resistance (Ω)

项目 Item	参数 Performance
方块电阻值 Square Resistorance	$50 \Omega /$ Square $(20 \sim 200 \Omega)$
$-55 \sim+125^{\circ} \mathrm{C}$ 电阻温度变化系数 $T C R\left(-55 \sim+125^{\circ} \mathrm{C}\right)$	$\pm 100 \mathrm{ppm}$
1000 小时 ${ }^{*} 125^{\circ} \mathrm{C}$ 阻值稳定性 Stability（ $\left.1000 \mathrm{H}^{*} 125^{\circ} \mathrm{C}\right)$	0.02%
短时间耐高温（5分钟） Short Term Max ET（5minutes）	$450^{\circ} \mathrm{C}$
最小电阻偏差 Minimum Resistor Tolerance	$\pm 5.0 \%$
$25^{\circ} \mathrm{C}$ 时膜层最大承受电流（mA／um） Maximum Rated Current（mA／um）＠ $25^{\circ} \mathrm{C}$	0.12

$\rho=$ 电阻材料的体积电阻率 Bulk Resistivity of Resistor Material（ $\Omega-\mathrm{cm}$ ）
$L=$ 电阻薄膜的长度 Resistor Length（cm）
$W=$ 电阻薄膜的宽度 Resistor Width (cm)
$t=$ 电阻薄膜的厚度 Resistor Thickness（cm）
为设计方便，假设 $L=W$ 时，方块电阻 $R_{\text {shooet }}=R s=\rho / t(\Omega /$ Square $)$ ，那么，电阻阻值 $=$ 方块电阻 $R_{\text {sheet }} \times(L / W)$ 。
To ease design，assumes $L=W, R_{\text {shoot }}=R s=\rho / t(\Omega /$ Square $)$ ，so that $R=R s \times(L / W)$ ．假设：以下TaN薄膜电阻设计时，采用的方阻为 50 欧姆／方。
Example：The thin film TaN resistors is 50 Ohm／Square．

薄膜电路设计规范

Thin Film Design Rules

3，设计规则 Design Rules

编号 Code	F⿳厶大彡 Feature	数 Minimum 值
A1	电极留边量 Metalization Pullback	0.050 mm
A2	孔中心到边缘距离 Hole Center to Border Spacing	$2 R$
B1	孔边缘到电极的距离 Via Hole Cover Pad	0.050 mm
B2	孔距 Pitch of Holes	$4 R$
C1	电阻长度 Resistor Length	0.050 mm
C2	电阻宽度／间距 Resistor Width／Gap	0.050 mm
C3	电阻对电极预留量 Conductor Margin at Resistor	0.025 mm
C4	电阻电极重叠量 Overlap	0.050 mm
C5	电阻留边量 Resistor Pullback	0.050 mm
D1	电极长度 Conductor Length	0.100 mm
D2	电极宽度 Conductor Width	0.100 mm
E1	标识位置 Mark Position	空白处 Space

微信公众号

微信技术支持

QQ技术支持

地址：广州市天河区五山路200号B312室 邮编P．C： 510635
ADD：\＃B312，No． 200 Wushan Road，Tianhe，Guangzhou，China电话TEL：（＋86）20－38905199
传真FAX：（＋86）20－38042058
邮箱E－Mail：Sales＠canarytec．com

[^0]: 4．1，以上产品型号均指简单 T 型，Π 型衰减器而言。The above products code no．refers to the simple T \＆π type attenuato
 3，基片标准厚度 0.010 inches（ 0.254 mm ）．Standard Thickness 0.010 inches $(0.254 \mathrm{~mm})$ ．
 4，回波损耗 VSWR（Max：1） 1.35 ： 1 ＠DC～18GHz．

